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Interfacial properties of fibrous composites 
Part I Mode/for the deboncling and puff-out processes 
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The processes for debonding and pull-out in parallel-sided as well as tapered fibre composites 
are described. Models which can predict and account for all the reported experimental 
debonding and pull-out behaviour are developed. The effect of the interfacial properties on the 
plot of maximum pull-out force against fibre embedded length is elucidated. Knowledge of the 
interfacial parameters of a composite allows proper characterization and leads to better 
prediction of the mechanical properties. 

1. Int roduct ion 
The strength and toughness of fibrous composites are 
dependent on the interfacial properties [1] which in- 
clude both the parameters which characterize the in- 
terface, and the physical nature of the interface. This is 
why there is much ongoing interest in the interfacial 
properties in different composite systems. The present 
work is concerned with the former aspect ofinterfacial 
studies, and is the second report on the interfacial 
properties of glass-reinforced polypropylene (PP). The 
latter aspect of interfacial properties, concerning the 
character and nature of both silane-treated glass fibre 
and clean untreated glass fibre-reinforced PP, has 
already been considered in earlier reports [2, 3-]. 

The pull-out test is widely used [1] for determining 
interfacial parameters such as the matrix shrinkage 
pressure on the fibre, Po, the interfacial coefficient of 
friction, g, and the interfacial shear strength, ~i. The 
strength of the composite is controlled by the inter- 
facial shear strength, while the toughness is influenced 
by the matrix shrinkage pressure, Po, and the inter- 
facial coefficient of friction, I~. The value of ~ is usually 
estimated from the single-fibre pull-out test. However, 
pull-out tests on specimens which are subjected to 
external hydrostatic pressures [4, 5] must be conduc- 
ted in order to determine la and Po. Although the pull- 
out test is so commonly used, there is no clear under- 
standing of the effect of interfacial properties such as 
interfacial shear strength, Poisson shrinkage of the 
fibre and interfacial friction on the resulting force- 
displacement curve, and the plot of debonding force 
against fibre-embedded length. 

The debonding criterion adopted affects the inter- 
pretation of pull-out test data. The debonding stress in 
a single-fibre pull-out has been interpreted in terms of 
either a maximum interracial shear stress criterion 
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[6-8] or an interracial fracture criterion [9-12]. The 
validity of either a strength-based or fracture-based 
approach to a given system can be determined [10] 
through pull-out tests on specimens with different 
fibre diameters. It has been s'hown for a glass fibre-PP 
system [12] that both approaches are applicable 
when the fibre diameter is less than 400 ttm, and that 
the strength-based approach is more appropriate for 
larger fibre diameters. The choice of the appropriate 
debonding criterion is necessary for reliable prediction 
of the force, Fi, at which debonding occurs in the 
composite. 

The existing debonding criteria cannot explain 
some of the reported experimental observations on the 
interracial debonding phenomenon. These include the 
two-stage debonding process [13J and the change in 
position of debonding crack initiation in different 
pull-out systems [14, 15]. It is possible that the point 
at which interfacial failure initiates depends not only 
on the interfaeial properties but also on the properties 
of the fibre and matrix, and the test configuration. 
This has not been discussed in previous studies. 

In the present study, a strength-based approach will 
be adopted for the single-fibre pull-out test. The inter- 
facial shear stress distribution along the embedded 
fibre will be analysed and a theory of interfacial 
debonding will be developed. It will be shown that the 
model developed can account for all reported experi- 
mental observations on the interfacial debonding phe- 
nomenon. Secondly, the theoretical aspects of the 
pull-out test of a slightly tapered fibre will be con- 
sidered and a model will be developed. The appli- 
cability of the pull-out model is evaluated using ex- 
perimental data. It will be shown in a following report 
that on the basis of the models developed, the inter- 
facial parameters Po, ~a and ~i, can be determined from 

0022 2461 �9 1992 Chapman & Hall 31 73 



one set of data from slightly tapered fibre pull-out 
specimens. 

2. The debonding  process 
2.1. Interfacial shear stress distr ibution 
Consider the application of a load to a fully supported 
pull-out specimen as shown in Fig. 1. The load is 
applied through gripping the opposing ends of the 
specimen at the free end of the fibre and the region of 
the matrix away from the embedded fibre. The stress 
across the fibre end is assumed to be negligible. Under 
the action of a pull-out force Fp, the specimen dis- 
places elastically as shown in Fig. 2. The shear force on 
the fibre element dx is equal to 2nr ' cxdx .  Assuming 
that the shear force decreases linearly in the y direc- 
tion such that it is zero at the circumferential surface 
of the matrix block and adopting a shear-lag analysis, 
the following expression (see Appendix) for the inter- 
facial shear stress distribution can be derived [161: 

~x - 2 @ r [ ~ ( 1 - q 0 e x p ( - ~ x )  

+ ~cosho~x ~ + (t - ~ t )exp(-  o~L)] 
s in - f i~  L (1) 

Fibre embedded Fibre emergent 

Fp 
J 

Figure 1 Schematic diagram of single-fibre pull-out test considered. 

where 

2G m 
O~ = {[rm/(rm _ r ) ] l n ( r m / r )  _ 1}(r 2 _ r2 ) 

Em(r ~ --  r 2) , =  
Em(rZm - r 2) + E f r  2 

and x is the distance from the fibre embedded end, G m 

and rm are the shear modulus and radius of the matrix 
block, respectively, and E m and Er are the modulus of 
the matrix and fibre, respectively. 

2.2. Position of interfacial crack initiation 
The effect of the relative modulus of the matrix and 
fibre (Ee/Em) , and the influence of the specimen dimen- 
sion (relative size of the matrix and the fibre, rm/r ) on 
the interfacial shear stress distribution will now be 
examined. Consider pull-out specimens of the same 
dimensions for the two different matrix systems as in 
Table I. The interfacial shear stress distributions in the 
above two systems under the action of a pull-out force 
of 10 N are as depicted in Fig. 3. 

It can be seen from Fig. 3 that the interfacial shear 
stress in the composite system with the smaller ratio of 
Ee /E  m (glass fibre-PP system) changes drastically 
along the fibre (see curve (a)). The interfacial shear 
stress concentration in this system exists at the emer- 
gent end of the fibre. In contrast, the interfacial shear 
stress distribution in the system with the larger ratio of 
E f / E  m (glass fibre rubber system) is relatively even 
and the stress concentration is located at the fibre 
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Figure 2 Elastic displacement of the fibre-matrix interface under a load. 
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T A B  LE I Pa rame te r so f  composite systems considered in the analysis of %, 

System E,, (GPa) Ef (GPa) v m v r rm (mm) r (mm) L (mm) 

Glass f ibre-PP 1.4 60.0 0.35 0.22 2.5 0.1 10 

Glass fibre-rubber 0.002 60.0 0.5 0.22 2.5 0,1 10 
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Figure 3 Interracial shear stress distribution at Fp = 
glass fibre PP system, (b) glass fibre-rubber system. 
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embedded end of the fibre (see curve (b)). This indi- 
cates that the point of the interfacial crack initiation in 
the pull-out specimen is dependent on the relative 
modulus ratio of the matrix and fibre. 

The effect of the relative size of the fibre and the 
matrix (rm/r) will now be considered. Fig. 4 shows 
the variation of the interfacial shear stress, ~ ,  at the 
embedded end (curve (a)) and emergent end (curve (b)) 
of the fibre with radius of the matrix block, rm, for the 
glass f ibre-PP system in Table I. The radius of the 
fibre in the system is assumed to be constant. It can be 
seen that when rm/r is small (i.e. small rm), the inter- 
facial shear stress at the embedded end of the fibre 
is higher than that at the emergent end. The inter- 
facial shear stress at both the emergent end and the 
embedded end are equal when rm/r is equal to 8 
(r m = 0.8 mm). However, for larger values of rm/r (for 
r,, > 0.8 mm), the interfacial shear stress at the emer- 
gent end of the fibre is much larger than that at the 
embedded end. This can be attributed to the rapid 
decrease in ~x at the embedded end such that z~ 
becomes very small when rm/r is large. In contrast, ~ 
at the emergent end of the fibre increases to a max- 
imum before decreasing slowly as r m is increased. 

It is apparent from the above analysis that the 
position of debonding crack initiation can occur at 
either the emergent or the embedded end of the fibre, 
depending on the relative modulus of the fibre and 
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Figure 4 Variation of interfacial shear stress at: (a) fibre embedded 
end, and (b) fibre emergent end, with radius of matrix block for the 
glass fibre PP system at Fp = 10 N. 

matrix, and on the relative diameters of the fibre and 
matrix utilized in the pull-out specimen. This accounts 
for the earlier reports of debonding crack initiation at 
either the emergent or the embedded end of the fibre in 
different composite systems. Therefore although 
debonding crack initiation in most systems has been 
reported to occur at the emergent end, debonding 
crack initiation in a steel wire-rubber system [14] 
which has a high Ef/E m occurs, as expected, at the 
embedded end of the fibre. 

2.3. Pull-out force for interfacial debonding 
Consider the more general case where ErIE m is small 
such that the maximum interracial shear stress exists 
at the emergent end of the fibre. Assuming a maximum 
shear stress criterion, the crack will initiate when % 
reaches the critical interracial shear stress ~i. From 
Equation 1, it can be seen that the pull-out force for 
crack initiation, Fi, is 

F 
F i = 2rtrri/~(1 -- ~)exp( -- ~zL) 

I - 4 + ( 1 - ~ ) e x p (  - ~L)] ~ cosh(~L) ] -1 + 
sin-nh-(~ j (2) 

After crack initiation, there will be a redistribution of 
stresses at the interface. Further crack propagation 
will occur only if the shear stress at the crack tip is 
again increased to zl through an increase in the ap- 
plied load. In the present analysis, crack initiation is 
assumed to lead to partial debonding. This assump- 
tion is valid for many composite systems. However, in 
some systems, catastrophic complete debonding oc- 
curs after crack initiation. 

2.4. Maximum pull-out force F d 
Frequently in many composite systems, the debonding 
crack initiates in the specimen well before it reaches 
the maximum pull-out force Fd on the load-extension 
plot of a pull-out test. Thus both a debonded and 
"bonded" region exist even before F d is reached. For 
the crack to propagate further, the applied force must 
overcome the load that can be sustained in the de- 
bonded region and be sufficiently large so that the 
maximum shear stress at the crack tip will once more 
approach z i. This is the case in a glass f ibre-PP system 
[2]. Therefore, Fd in these systems has two compon- 
ents. 

If the debonding crack has travelled through a 
distance I d (see Fig. 5), the fibre embedded length L 

Direction of 
crock growth 
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Figure5 Schematic diagram of partially debonded pull-out 
specimen: I. = bonded region, l d = debonded region. 
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will consist of the bonded region (0 < x < lu) and the 
debonded region (l, < x < L). The shear stress dis- 
tribution in the bonded region is governed by Equa- 
tion 1 but the bonded region has decreased from L to 
1,. For crack growth to continue, the shear stress at 
the crack front must be equal to ~ and the applied 
force required, Fuy , to  achieve this is 

F 
Fur = 2rrziL0t(1 - @)exp(-  0tl,) 

[~ + (1 - @)exp( - =/u)]= cosh(=/.)-] - '  
+ sTnnh(   3 j (3) 

In the debonded region, the applied force Fp has to act 
against the interfacial friction between the fibre and 
the matrix. For a rigid fibre system, the total frictional 
force Ff in the debonded length ld is given by 

Ff  = 27rrPo~t(L - I~) (4) 

The pull-out force Fp on the specimen is the sum of the 
force in the bonded region Fuy and the force in the 
debonded region Ff such that 

Fp = Fuy + Ff (5) 

Fig. 6 shows the variations of Fp,  Fuy and Ff as the 
debonding crack propagates along the fibre. Once the 
debonding crack has initiated and begun to grow, Fuy 

will drop due to shortening of the debonded length lu. 
However, the corresponding increase in the debonded 
region 1 d gives rise to an increase in the interfacial 
friction Ff. If the embedded length of the fibre is long, 
Fuy is a slow function of the debonding crack length 
during the initial stage of crack growth. The pull-out 
force Fp will increase from Fp = F i at the point of 
debonding crack initiation (lo = 0) to Fp = Fd at a rate 
corresponding to the rate of increase in interfacial 
friction due to debonding crack propagation. 

The rate of increase in Ff is equal to the rate of 
decrease in Fuy a t  lu = L~, where Lo is the critical 
embedded length at which the pull-out force Fp attains 
a maximum value Fa. If the parameters of the pull-out 
system are known, Lc can be calculated from Equation 
5 by taking dFp/dl, = 0. It has been shown [16] that 
Lr is dependent on almost all the system parameters 
but is independent of the embedded length L. 

When the debonding crack front displacement has 
propagated beyond Lr the rate of increase in Ff is 
smaller than the rate of decrease in Fur At some stage, 
crack growth will change from steady to catastrophic 
in nature such that the remaining bonded region fails 
without further increase in Fp (see Fig. 6). The fibre 
will then begin to pull out. Hence, the maximum pull- 
out force Fd occurs at l, = Lr where 

F d = Fuy -k- 2rcrPo~t(L - Lr (6) 

2.5. Relation between F a and the fibre 
embedded length L 

It is common to plot the pull-out force F d against the 
embedded length L for test data from a single-fibre 
pull-out experiment. Two situations exist in the pull- 
out tests. For specimens with L < Lc, the value of Fuy 
required to maintain the shear stress at the crack front 
at the critical value xi will drop rapidly once the 
debonding crack has initiated and begun to grow. 
Complete debonding occurs catastrophically without 
further increase in the pull-out force. Therefore, the 
pull-out force for complete debonding is equal to the 
force for debonding crack initiation in Equation 2. 

For specimens with L >> Lc, Fuy is a slow function of 
the crack length during the early stage of crack growth 
(see curve (a) in Fig. 6). As the interracial crack propa- 
gates, the increase in the interfacial frictional force F f  

with debonded length 1 d will cause the shear stress at 
the crack front to drop below zi. Hence, the applied 
load on the system must be increased for debonding to 
progress further. In a rigid fibre system, the extra load 
required to cause complete debonding is equal to 
2rtrPol~(L- Lc). It can be seen that this extra load 
varies linearly with L. 

2.5. 1. Ef fect  o f  inter facia l  shear s t rength ~ 
Fig. 7 shows the effect of interfacial strength ~i on the 
shape of the curve of F d against L. For a system with 
high interfacial strength xi, the curve exhibits a dis- 
tinctive bend at L = Lc (see curve (a)). As q;i decreases 
the curve shifts downward (see curve (b)). If ri is only 
marginally higher than the interfacial frictional stress 
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Figure 6 Variation of(a) Fur, (b) Ff and (c) Fp with the debonding 
crack length. 
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Figure 7 Theoretical plot of F d against L for glass fibre-PP system 
for (a) xi = 15 MPa, (b) ri = 10 MPa, (c) x i = zf. 



zf, the curve almost becomes a straight line which 
passes through the  origin (see curve (c)). 

In a fibre pull-out experiment, the pull-out data for 
L < Lc may be difficult to obtain due to practical 
limitations. It is therefore possible that the experi- 
mental results appear as a relatively straight curve 
which intercepts the vertical axis at a point above the 
origin. Such a case has been reported [17] but the 
intercept on the vertical axis was attributed to matrix 
residue attached to the emergent end of the extracted 
fibre. However, the present analysis clearly shows that 
the intercept on the Fd axis might partly be due to the 
dynamics of interfacial debonding as represented by 
curve (a) in Fig. 7. 

2.5.3. Effect of interfacial friction 
Fig. 9 shows the effect of the interfacial frictional stress 
~f on the plot of F0 against L for the glass f ibre-PP 
system in Table I. In practice, the interfacial shear 
stress is dependent on the nature of the interface or 
interphase, and on the surface properties of the sur- 
faces in sliding contact. It is apparent that the slope of 
the plot beyond the "knee" at L = L c increases with 
increasing zf. 

For  a given fibre embedded length L > Lc, F d is 
larger for the system with higher zf (see Fig. 9). This is 
in agreement with the results obtained elsewhere [4, 5] 
where zf in the systems considered was increased via 
the application of external pressure on the specimens 
during pull-out. 

2.5.2. Effect of Poisson shrinkage of fibre 
If a ductile fibre is used or if the aspect ratio of the 
embedded fibre is very large, the Poisson shrinkage 
effect becomes significant. Under these conditions 
high stresses exists in the fibre when the system is 
loaded. The Poisson shrinkage in the fibre reduces the 
effective radial pressure. Hence, the frictional force on 
the debonded region will drop. Consequently, the rate 
of increase in Fd will no longer be linear but will 
diminish with increasing L. It has been shown [-16] 
that under these conditions, the pull-out force Fd 
becomes 

Fd -- R + fuy o 

x e x p ( - 2 g R ( L - r  Lc)) (7) 

where R = Emvf/[Ef(1 + Vm)], and vf and v m are the 
Poisson's ratios of the fibre and matrix, respectively. 

Fig. 8 shows the theoretical curves of F d versus L 
with (curve (b)) and without (curve (a)) the effect of 
Poisson shrinkage on the fibre for the glass f ibre-PP 
system in Table I. It is evident that the effect of the 
Poisson shrinkage is to decrease the slope of the later 
portion of the curve. In addition, the deviation of the 
curves increases at large embedded fibre lengths where 
the debonding force Fd is necessarily higher. 

3. T h e  p u l l - o u t  p r o c e s s  
3.1. Development of model 
A schematic representation of a single-fibre pull-out 
specimen which contains a slightly tapered fibre in the 
matrix is shown in Fig. 10. The fibre is assumed to be 
rigid while the matrix is ductile. The degree of taper of 
the fibre is defined by tan0 where 

tan0 - (DI - 0 2 )  (8) 
2s 

and D z and D2 are the fibre diameters at the embedded 
end and emergent end of the fibre, respectively, and s is 
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Figure 9 Predicted plots of /~d against L for the glass fibre-PP 
system assuming "q = 10 MPa and (a) "of = 6 MPa, (b) -rf = 3 MPa. 

- -20" I 

/ (b) 
o 

C~ 

c :  
0 

! I 

0 5 10 
Fibre embedded length ( mm ) 

Figure 8 Effect of Poisson shrinkage of fibre on plot of F d against L: 
(a) without Poisson shrinkage, (b) with Poisson shrinkage. 
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Figure 10 Schematic representation of test on a slightly tapered 
single-fibre pull-out specimen. 
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the distance between D 1 and De; tan0 can either be 
positive or negative. 

Consider the general case in Fig. 10. The radial 
pressure on the fibre before debonding can be assumed 
to be constant along the embedded length and equal 
to the matrix shrinkage pressure Po. After debonding, 
the relative movement between the fibre and the ma- 
trix will increase the radial pressure on the fibre. The 
change in radial pressure is dependent on the modulus 
of the matrix, the fibre geometry, and the pull-out 
displacement. When the fibre has been displaced by a 
distance x, the radial expansion A of the cavity in 
contact with the fibre is A = x tan0. The correspond- 
ing radial strain in the matrix around the cavity 
becomes 

A tan 0 
- -  = x - -  ( 9 )  
r r 

This strain introduces an increase in the radial pres- 
sure, 8p, on the fibre. If the size of the matrix block is 
considerably larger than the fibre diameter, then 
thick-walled cylinder theory is applicable and 6p is 
given by 

AEmc 
6p - (10) 

r(1 + Vm) 

where Emc is the compressive modulus of the matrix 
material. Substituting Equation 9 into Equation 10 
gives 

Eme tan 0 
6p = x (11) 

r(1 + Vm) 

The radial pressure may either increase or decrease 
with the pull-out displacement since the degree of 
taper of the fibre can either be positive (D1 > D2) or 
negative (D~ < D2). In the case of a fibre of constant 
diameter (tan 0 = 0), the radial pressure remains un- 
changed during fibre pull-out. 

3.2. Frictional pu l l - ou t  s t ress  
It can readily be shown 1-16] that the frictional pull- 
out stress, ~p, in a specimen with a fibre of constant 
diameter is 

~p = ~ 1 - exp 
t" 

where R = EmcVf/[Ef(1 + Vm)]. The form of Equa- 
tion 12 is similar to that given elsewhere 1-18]. In the 
case of a tapered fibre, Equation 12 should be modi- 
fied to account for the increase in radial pressure so 
that tip becomes 

Po + 6P[1  
c~p - R - exp r 

(13) 

The complete expression for e~p can be obtained by 
substituting Equation 11 into Equation 13. 

3.3. S h a p e  of pu l l - ou t  cu rves  
The use of tapered fibres gives rise to a variety of pull- 
out curves. Theoretical curves of the frictional pull-out 
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stress Cyp against the fibre displacement x for speci- 
mens with different values of tan0 can readily be 
generated using Equation 13 since the terms in the 
equation are related to the specimen geometry and the 
physical properties of the composite system. The the- 
oretical curves for specimens with different tan0 for 
the glass fibre PP system in Table I are as shown in 
Fig. 11. To generate the curves in Fig. 11, the values of 
Po and g were assumed to be 10 MPa and 0.3, respect- 
ively~ These assumed values are reasonable since they 
are close to the values of Po (7 MPa) and g (0.6) in a 
steel wire-polycarbonate system [19]. 

It can be seen from Fig. 11 that a positive tan0 may 
cause % to increase to a maximum before gradually 
decreasing to zero as pull-out progresses (curve (b)). If 
the value of tan 0 is large enough, it is possible for Crp 
to increase to a value equal to the tensile strength, ~f,, 
of the fibre. Therefore, the fibre will break at ~p = ~fu 
and the pull-out force will drop sharply to zero (see 
curve (a)). In contrast, a large negative tan0 may cause 
loss of contact between the fibre and the matrix before 
the fibre is completely extracted from the matrix. As a 
result, cyp will drop to zero at a point where x < L (see 
curve (e)). All the predicted pull-out curves in Fig. 11 
have been observed experimentally [20]. 

3.4. Work expended during pul l -out  
The work done against frictional pull-out, W, is re- 
presented by the area under the pull-out curve where 

W = ffnr2cypdx 

Substituting Equation 13 into the above equation 

W = ~ Po + Xr( 1 + Vm) 

x [ l - - e x p ( - 2 g R ! L - x ) ) ] d x  (14) 

It can be shown [16] that the solution to the above 
integral is 

30 ibre breakage 
/ Fibre strencJth=25N 
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Figure ll Theoretical curves of pull-out force against displacement 
based on Equation 13 for glass fibrekpp system: tan0=(a) 
4• -'t, (b) 2• -4, (c) lx l0  a, (d) 0, (e) -1•  -4 , 
(f)-2• 4. 



W ex ( 
Em, tan0 { L  2 rL (2@R) 2 

+ r(1 + Vm) 2gR + 

(15)  

For a specimen with an embedded fibre of constant 
diameter tan0 = 0, the work done against frictional 
pull-out reduces to W o where 

- r~r2{PoL- Por [1 --exp(- ~RL)t } 
W~ R- 2gR 

(16) 

The difference in work done against frictional pull-out 
between a specimen with a slightly tapered fibre and 
one with a fibre of constant diameter can be found by 
subtracting Equation 16 from Equation 15, giving 

w - Wo - 
~rEmr z rL ( r ) z 
R(t -{-Vm) 2~l.R "~ 2 ~  

The term (W - Wo) is the shaded area of the pull-out 
portion of the load-displacement plot shown in 
Fig. 12. As expected, slightly tapered fibres with posit- 
ive values of tan0 increase the work expended during 
pull-out. It will be shown in a subsequent paper that 
the interracial parameters can be calculated from the 
expression for ( W -  Wo). 

4. Conclusion 
A debonding model for evaluating the stresses at the 
fibre in a pull-out configuration has been developed. 
The model, which assumes a maximum shear stress 
criterion, can account for all the different reported 
experimental observations on the debonding crack 
initiation phenomenon. The model reveals how the 
plot of maximum debonding pull-out force is affected 
by the interracial strength, Poisson shrinkage of the 
fibre, and interracial frictional force. A pull-out model 
has also been developed to describe the pull-out pro- 
cess in specimens which may not have fibres of con- 

i 
,o 

o . .  

Displacement ~ x 

Figure 12 Extra frictional work done (shaded area) due to pull-out 
of a slightly tapered fibre, tan 0 > 0. 

stant diameter. There is also experimental support for 
the latter model. 

Appendix:  Longitudinal  stress 
distr ibut ion at the interface 
Consider the application of a load to the specimen in 
Fig. 1. The radius of the cylindrical matrix block is r m 
and the radius of the fibre is r. The specimen will be 
displaced elastically as shown in Fig. 2. Neglecting the 
stress across the fibre end, it can be shown from 
displacement considerations that 

(1 -]- 8mx)dx --k dumx = (1 + gfx)dx 

dumx 
dx - ~fx - em~ (A1) 

Next consider the stresses acting on an element of the 
fibre and of the matrix at the interface of the pull-out 
specimen (Fig. A1). From the equilibrium of the forces 
at the interface 

rc(r~ - r2)dom~ - 2rcr'cxdx 
Therefore 

(rZm--r2) dcymx (A2) 
~x = - 2r dx 

For the fibre element, one can equate ~rZdcyfx 
= 2~r'r r dx, so 

zx = ~ (A3) 

For any cross-section at x (see Fig. 2), the pull-out 
force can be written as 

f p  = 7t(r2m - -  r2)Omx + ~t"2(yfx (A4) 

From Fig. 2, the displacement Um~ can be written as 

f ,m~y d gmx = Gm y (AN) 

where ~r is the matrix shear stress in the y direction 
and G m is the shear modulus of the matrix. The shear 
force, Si, on the element of the matrix at the interface is 
S~ = 2rtr% dx. Since the pull-out specimen is gripped 
at the end of the matrix block, no shear force therefore 
acts on its circumferential surface. Assuming the shear 
force decreases linearly in the y-direction from S i at 
the interface to zero at the circumferential surface of 
the matrix block, the shear stress across the matrix, ~r, 
becomes 

y k ,  r m --  r /  

I 
0"rex ~ [ 

O-fx 4 [ 

d x  

Mafrix 

"{X i _ 

"~X 

fibre 

lm 

~ qrnx§ 

~_ O ' f x .  do-rex 

Figure A1 Stress distributions at the interface. 
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Substituting the above equation into Equation A5 and 
integrating, 

r zx [ - / "  r m "~1 ( rm '~  ] 
Umx - G~ L t r m  - - ~ )  n~,T) - 1 (A6) 

Differentiating Equation A6 with respect to x, 

dUmXdx r I-[ rm"~(r~_ ) ]dTx~_x -  Lt )ln - 1  (A7) 

Differentiating Equation A2 with respect to x,  

(r: r )d om  r 
From Equations A8, A7 and A4, and applying 
Hooke's law to the strains ~f~ and Emx in Equation A1, 
it can be shown that 

d 20"mx 
d x  2 

-- KaGmx + Ca 

where K. and C, are constants denoted by 

Ka = 2GmI(r r ~  r ) l n ( ~ )  - 1] -~ 

(A9) 

x(r2m -- r2) -1  ( em(r2m ~2E~rn-- r2) -I- E f r  2 )  

C a = - 2 G m F p [  (\r mrm- r/~ln(rm] - 11 - l k  r / 

X(r  2 -- r2) - l (7~r2Ef)  -1  

Equation A9 is a second-order differential equation 
which can readily be solved. It can be shown [16] that 
the solution is 

{ O'mx --  (r 2 _ ?.2)/~ ~/ + (1 - ~ ) e x p ( -  ~ x )  

sinh(~x) ; 
- [q/ + (1 - ~)exp(- ~L)] sinh(~L)J 

(A10) 

where 

and 

= K1/2 
- - a  

em(r2m - -  r 2) 
= 

Em(r2m -- r 2) A- Efr  2 

Differentiating Equation A10 with respect to x and 
substituting into Equation A2 yields 

Fp f ~0~(1 - qt)exp(- ctx) 
Zx - 2nr 

:t cosh(~x) ; 
+ [4 + (1 - q0exp(- aL)] sinh(~L) J 

(A 11) 

The expression for the tensile stress on the fibre is 

of~ - 1 - ~ + (1 - q / )exp( -  ctx) 
/~r 2 

_ [4  + (1 -- , ) e x p ( - ~ L ) ] s i n h ( ~ x ) ' ] ]  
sinh(~L) JJ 

(A12) 
Therefore, the average tensile stress on the matrix CYmx, 
the shear stress at the interface xx, and the average 
tensile stress on the fibre of~ are governed by 
Equations A10, A l l  and A12, respectively. 
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